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An Unconditionally Stable FDTD Method Using
Tetrahedral Cells

Wilson A. Artuzi Jr. – Departamento de Engenharia Elétrica UFPR

Abstract–The concept of the finite difference time domain
method is applied to tetrahedral cells in order to permit its
use with structures of complex shapes. Unconditional sta-
bility is achieved through the Newmark time discretization
of wave equation and the conjugate gradient method with
incomplete Cholesky preconditioning provides a fast solver
for the system of linear equations to be evaluated every time
step. Numerical experiments have shown that there exists
an optimum time step value which conducts to an accurate
solution with the minimum of two iterations per time step.
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I. Introduction

Time domain numerical solutions of Maxwell’s equations
have become powerful tools to predict phenomena and an-
alyze devices involving electromagnetic wave propagation.
Among them, the finite difference time domain (FDTD)
method is of great importance [1].
The FDTD method, which is based on separate stag-

gered orthogonal grids for the electric and magnetic field
discretizations in space, has provided a robust second-order
accurate algorithm for time domain electrodynamic com-
putations and its use has been widely spread despite of the
fact that arbitrary shaped structures do not match the or-
thogonal lattice. Several approaches have been developed
in order to overcome this drawback. Some of them main-
tain the orthogonal grid basis [2]. Others are implemented
on unstructured meshes but their use has not been con-
tinued because they can suffer from numerical instabilities
depending upon the mesh being constructed [3],[4].
This work will show that the FDTD concept can be ap-

plied to tetrahedral meshes to obtain an unconditionally
stable but implicit formulation which is more accurate but
requires the solution of a linear system of equations every
time step. The use of a preconditioned conjugate gradient
solver, however, can provide a fast numerical processing
reaching the minimum of two iterations per time step if a
suitable time step duration is chosen. Accuracy issues are
addressed through the evaluation of the resonant frequency
of a metallic cylindrical cavity under different spatial and
temporal sampling rates.

II. Geometric Definitions

The mathematical treatment of the problem will be fo-
cused on a tetrahedral cell at first and the formulation for
the whole spatial domain will be achieved later by superpo-
sition. The combination of staggered elementary primary

W. A. Artuzi Jr. is with Department of Electrical En-
gineering, Parana Federal University, Curitiba , PR, Brasil,
artuzi@eletrica.ufpr.br.

Fig. 1. A tetrahedral cell. Points 1, 2, 3 and 4 are referred to the
primary mesh element (solid lines) and points 0, 1̂, 2̂, 3̂ and 4̂ are
referred to the secondary one (dotted lines). Highlighted surfaces
indicate the primary face 3 and the secondary face 23.

and secondary mesh elements comprising a region of ho-
mogeneous medium will be called a cell, as shown in Fig.1.
The primary mesh element is formed by points 1, 2, 3 and

4 whose coordinates are provided as the output of mesh
generators. Connection of two points by a straight line
form a primary edge to be denoted by two indices in refer-
ence to these points and its length vector is obtained by

�Lpq = �Rp − �Rq (1)

where �Rp and �Rq are position vectors of vertices p and
q. These vectors can be arranged into the primary length
matrix as

L =


L12x L12y L12z
L13x L13y L13z
L14x L14y L14z
L23x L23y L23z
L24x L24y L24z
L34x L34y L34z

 (2)

Three edges form a primary triangular face to be denoted
by one index in reference to the point excluded from this
face. The area vector of a primary face, pointing outward
the cell, is

�Ss =
(−1)s
2

�Lpq × �Lqr (3)

where p, q, r and s stand for cyclic permutations of indices
1, 2, 3 and 4. These can be arranged into the primary area
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matrix as

S =


S1x S1y S1z
S2x S2y S2z
S3x S3y S3z
S4x S4y S4z

 (4)

The secondary mesh element consists of a point 0 which is
the barycenter of the cell and one point on each face 1̂, 2̂,
3̂ and 4̂ which are their barycenters. Connection of point
0 with the barycenter of a face by a straight line form a
secondary edge whose index indicates the correspondence
with this barycenter and its length vector is

�Ls =
�Lps + �Lqs + �Lrs

12
(5)

and they form the secondary length matrix as

L̂ =


L1x L1x L1x
L2x L2x L2x
L3x L3x L3z
L4x L4y L4z

 (6)

Two secondary edges define a secondary face whose indices
correspond to the points excluded from this face and its
area vector is

�Spq =
�Sp − �Sq
12

(7)

which form the secondary area matrix

Ŝ =


S12x S12y S12z
S13x S13y S13z
S14x S14y S14z
S23x S23y S23z
S24x S24y S24z
S34x S34y S34z

 (8)

These length and area matrices will be useful in the spa-
tial discretization of Maxwell’s equations to be explained
in the next section.

III. Matrix Wave Equation

As in finite element methods [5], matrix equations have
shown to yield compact notation and allow for direct imple-
mentation in computational algorithms therefore they will
be used here instead of the notation commonly encountered
in FDTD formulations. The matrix wave equation will be
derived from the Maxwell’s equations in integral forms

I
L

�e.d�L = − ∂

∂t

Z
S

�b.d�S (9)I
L

�h.d�L =
∂

∂t

Z
S

�d.d�S +

Z
S

�j.d�S (10)I
S

�d.d�S =

Z
V

ρ dV (11)I
S

�b.d�S = 0 (12)

being �e and �h the electric and magnetic field intensities, �d
and �b the electric and magnetic flux densities, ρ and �j the
electric charge and current densities, respectively.

Here, the spatial discretization will be based on a piece-
wise constant approximation of the electromagnetic quan-
tities, i.e., they will be assumed to be constant inside a cell
and therefore (11) and (12) are automatically satisfied once
no charge accumulation is being considered.
The application of (9) on each primary triangular face

gives

Σ L e = − ∂

∂t
S b (13)

where the small bold letters represent the time dependent
vectors inside the cell

e =
£
ex ey ez

¤T
(14)

b =
£
bx by bz

¤T
(15)

and the capital and greek bold letters represent time in-
variant matrices. The matrix

Σ =


0 0 0 −1 1 −1
0 1 −1 0 0 1
−1 0 1 0 −1 0
1 −1 0 1 0 0

 (16)

completes the circulation around each triangular face
through proper summation of the line integrals along the
edges.
The application of (10) on each secondary face gives

ΣT L̂ ν b =
∂

∂t
Ŝ ε e+ Ŝ σ e+ Ŝ j (17)

where ν, ε and σ are the magnetic reluctivity (inverse of
magnetic permeability), electric permittivity and electric
conductivity tensors, respectively, and

j =
£
jx jy jz

¤T
(18)

is the excitation current density vector.
The matrix curl equations (13) and (17) can be combined

and cast as a matrix wave equation of the form

C
d

dt
v+G v+K

Z t

0

v dt = i (19)

where
i= Ŝ j and v = −Le (20)

are the excitation current and the unknown voltage vectors
along the primary edges and

C = Ŝ ε (LTL)−1LT (21)

G = Ŝ σ (LTL)−1LT (22)

K = ΣT L̂ ν (STS)−1ST Σ (23)

are the capacitance, conductance and reluctance matrices
of a cell, respectively. Because L and S are not square
matrices their inverse cannot be found. A least squares
solution, however, can be attained by applying the Moore-
Penrose generalized inversion. The global wave equation
is achieved by performing the superposition of elements of
C, G and K when the edges are addressed under a global
numbering procedure [5].
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IV. Time Stepping Solution

Once the global matrix equation has been obtained, it
must be solved for the time dependent voltages v as a re-
sponse to the excitation currents i. The FDTD method
employs the central difference approximation for the time
derivatives to arrive at a conditionally stable time stepping
solution. Stability is limited to a maximum constraint of
the time step duration which is roughly proportional to the
dimensions of the smallest cell [1]. The same method could
be used here as well, but the Newmark method [6],[7] is
more convenient since it leads to a stable solution regard-
less of the time step duration. This method is not usual in
FDTD algorithms because it conducts to an implicit solu-
tion, i.e., a system of linear equations has to be solved every
step, but it is advantageous in the present formulation as
the implicit solution arrises anyway.
To apply the Newmark method, the global wave equation

is rewritten as

C
d2

dt2
w+G

d

dt
w+K w = i (24)

with

w =

Z t

0

v dt

The time discretization is attained by using central differ-
ences and a weighted average as

C
wn+1 − 2wn +wn−1

∆t2
+G

wn+1 −wn−1
2∆t

+

+K
wn+1 + 2wn +wn−1

4
= in (25)

where ∆t is the time step duration and the index n rep-
resents the time instant t = n∆t. The difference equation
(25) can be rearranged as the following set of recursive
equations

(C+
∆t

2
G+

∆t2

4
K) un+1 = in −G vn −K wn (26)

vn+1 = vn +∆t un+1 (27)

wn+1 = wn +∆t vn+1 (28)

Since C, G and K are real and symmetric sparse matri-
ces with positive elements on the main diagonal, the con-
jugate gradient method with incomplete Cholesky precon-
ditioning (ICCG) [8] is one of the most appropriate solvers
to find un+1 in (26) taking a null vector as initial guess.
The desired voltage vector vn+1 appears in (27). Conver-
gence aspects related to the number of ICCG iterations
will be discussed in the next section by means of numerical
experiments.

V. Numerical Experiments

Testing of the proposed formulation is implemented by
computing the resonant frequency of a lossless metallic
cylindrical cavity under different spatial and temporal sam-
pling densities. The cavity is filled with air and it has a

diameter of 380mm and a height of 300mm. The depen-
dence of the accuracy on time and space discretizations will
be investigated separately. The investigation will be based
on three parameters: the number of ICCG iterations and
the average temporal and spatial sampling densities to be
defined by

ξ =
Lav
c∆t

(29)

η =
λ0
Lav

(30)

respectively, where c is the velocity of light, λ0 is the free
space wavelength at the resonant frequency and Lav is the
average of all primary edge lengths.

A. Modeling

The perfect electric conductor boundaries are modelled
by imposing null voltages on the edges that lay on them. A
current source is impressed along the cavity axis in order
to excite the fundamental TM010 mode. The source shape
in time is a Gaussian derivative pulse having a width of
1.7ns to span significant field amplitudes near the resonant
frequency. Voltage samples are taken along the cavity axis
during 50ns and are Fourier transformed to identify the
resonant frequency value.

B. Temporal Sampling

In order to verify the accuracy behavior against the dis-
cretization in time, a mesh having average spatial sampling
density of η = 15 is implemented. The relative errors of
the resonant frequency are plotted with circle marks, in
Fig.2, for temporal sampling densities ranging from 1 to
10. The corresponding maximum relative residuals of the
ICCG are plotted together with square marks. The ICCG
algorithm is run for 2 (dotted lines), 3 (dashed lines) and
4 (solid lines) iterations per time step. It can be observed

Fig. 2. Relative error of resonant frequency (°) and relative resid-
ual of ICCG (¤) against the average temporal sampling density.
ICCG algorihm is run for 2 (· · ·), 3 (- - -) and 4 (–) iterations
per time step.

that the relative error does not change significantly with
the number of ICCG iterations in the range 2 ≤ ξ ≤ 6.
This means that a minimum of 2 iterations per time step
can be used within this range and increasing the number of
iterations does not affect the solution at all, although the
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relative residual decreases. For ξ < 2, the absolute value
of the relative error increases drastically, but the solution
maintains stable. For ξ > 6, the relative error reaches a
plateau, but more ICCG iterations are required as ξ in-
creases. All curves of relative residual have a minimum at
ξ = 4, giving the insight that close to this temporal sam-
pling density the best ICCG convergence is reached. For
comparison, the maximum temporal sampling density al-
lowed for a stable FDTD solution with cubic cells is ξ =

√
3

(inverse of numerical stability factor).

C. Spatial Sampling

Maintaining the optimum temporal sampling density of
ξ = 4 and two ICCG iterations per time step, the accu-
racy has been investigated against the spatial sampling
density as shown in Fig.3 with square marks. A reference
line is plotted to show the second-order convergence of the
method.

Fig. 3. Relative error of resonant frequency against the spatial sam-
pling density (¤). The solid line represents a second-order accu-
racy reference.

D. Discussion

It is a well known fact that increasing the time step dura-
tion degrades the accuracy of the Newmark technique, thus
making use of very large time steps is not recommendable
though the solution is stable [6]. On the other hand, it is
interesting to notice that reducing the time step duration
degrades the ICCG convergence. This can be explained as
the condition number of the matrix on the left-hand side
of (26) is increased for small time steps since matrix K
is indefinite [7]. The optimum temporal sampling density
ξ = 4 appears to be the best compromise between both
situations.
Results obtained with orthogonal grid FDTD simula-

tions [2] are used for comparison. In these simulations,
the cavity is tilted with respect to the grid axes and the
maximum errors are summarized in Table I for spatial sam-
pling densities of η = 10 and η = 20. The staircase ap-
proach leads to the highest errors while the contour-path
and the Dey-Mittra approaches reach better results for re-
fined meshes. The present method provides the best accu-
racy even for the lowest spatial sampling density. This rep-
resents a great advantage which makes this method com-
petitive despite of its implicit nature. Unfortunately, CPU

time and memory requirements are not available in [2] for
comparison.

Table I
Relative Errors for Resonant Frequency of
Cylindrical Cavity under Different FDTD

Implementations

Absolute Percentual Error
η 10 20

Staircase [2] 5.3 2.4
Contour-Path [2] 2.2 1.4
Dey-Mittra [2] 2.9 0.4

This Method (ξ = 4) 0.1 0.05

Finite element time domain methods using first order
edge basis functions produce errors similar to those ob-
tained by this method [6]. Furthermore, the low frequency
spurious response reported in [7] was not noticed. This
may be due to the use of w instead of v in the Newmark
formulation. Since v is the time derivative of w, a slow
spurious response in w would have negligible effect in v.

VI. Conclusion

An unconditionally stable time domain formulation for
electrodynamic computations using tetrahedral meshes has
been presented. The method is more accurate than FDTD
implementations with orthogonal grids for modeling curved
surfaces. Its implicit nature is overcome through the
incomplete Cholesky preconditioned conjugate gradient
solver and two iterations per time step can be achieved
when the optimum time step duration is used. Finally, an
empirical formula for estimating this optimum value has
been presented.
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