Memórias

Efeitos Físicos envolvidos

- Eletricidade
- Magnetismo
- Temperatura
- Luz

Prof. Marlio Bonfim TE159 - Memórias

1

Memórias baseadas em Efeitos Ópticos/Térmicos

Sistemas que usam Luz e/ou Temperatura para escrever e ler dados em um meio, de forma reversível ou não.

Histórico

- Cartões perfurados:
 - Introduzido pela IBM em meados 1930
 - Principal forma de armazenamento de longa duração nos primeiros computadores
 - Gravação por perfuração
 - Leitura óptica com fotodiodos

Memórias baseadas em Efeitos Ópticos/Térmicos

Histórico

- Laser Disc:
 - Criado por David Paul Gregg em 1959
 - Disco opaco, diâmetro de 30 cm, com sulcos transparentes
 - Analógico: modulação da intensidade de luz
- CD-DA (Compact Disk-Digital Audio)
 - Criado por Sony-Philips em 1982
 - Disco de policarbonato de 12 cm com camada reflexiva (Al)
 - Codificação digital em 16 bits, capacidade 73 min

Prof. Marlio Bonfim TE159 - Memórias 3

Memórias baseadas em Efeitos Ópticos/Térmicos

Histórico

- CD-ROM (Compact Disk-Read Only Memory)
 - Sony-Philips 1985
 - Tecnologia do CD-DA extendida para gravação de dados
 - Padrão físico: ECMA-119; Padrão lógico: ISO 9660
 - Capacidade: 650 MB
- CD-WORM (CD-Write Once Read Many)
 - **1990**
 - Material da mídia baseado em mudança de transparência permanente induzida por temperatura
 - Atualmente chamado de CD-R

Memórias baseadas em Efeitos Ópticos/Térmicos

Histórico

- CD-MO (CD-Magneto Optical) ou MiniDisc
 - Desenvolvido pela Sony 1991
 - Tecnologia de mídia magneto-óptica regravável
 - Disco de 6,5 cm, dedicado para audio digital compactado
 - Capacidade original: 60 min de audio (ATRAC)
- DVD (Digital Versatile Disc ou Digital Video Disc)
 - Desenvolvido por Toshiba, Hitachi, Pioneer, JVC... em 1995
 - Maior densidade, λ=650 nm
 - Capacidade original: 4,7 GB por face/camada

Prof. Marlio Bonfim TE159 - Memórias 5

Memórias baseadas em Efeitos Ópticos/Térmicos

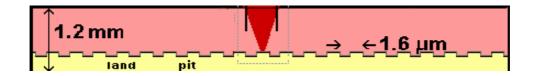
Histórico

- CD-RW (CD-Re Writable)
 - **1997**
 - Material da mídia baseado em mudança de fase reversível induzida por temperatura
- Blu-ray Disc (BD)
 - Sony-Panasonic 2004
 - Maior densidade, λ=405 nm
 - 25 GB por face/camada

Memórias baseadas em Efeitos Ópticos/Térmicos

Histórico

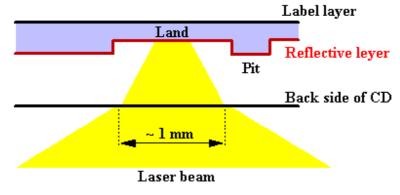
- HD DVD (High Density DVD)
 - Toshiba- NEC 2004
 - Maior densidade, λ =400 nm
 - 15 GB por face/camada
- HVD (Holographic Versatile Disc)
 - Maxell 2006
 - Baseado no princípio de holografia colinear
 - 2 comprimentos de onda: imagem holográfica dos dados
 - Capacidade original: 300 GB (3,9 TB)


Prof. Marlio Bonfim TE159 - Memórias 7

Densidade de informação

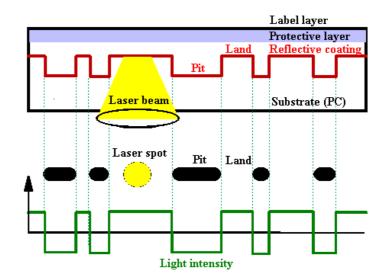
Prof. Marlio Bonfim TE159 - Memórias

- Características do disco
 - Material: polycarbonato com 1,2 mm de espessura
 - Índice de refração: n=1,55
 - Alta transparência ao λ=780 nm
 - Fabricação por injeção em molde: baixo custo
 - Camada reflexiva de Alumínio ou Ouro (50 a 100 nm)
 - Camada protetora de verniz (alguns µm)



Prof. Marlio Bonfim TE159 - Memórias

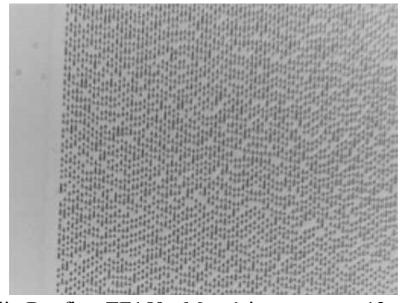
9


CD: Princípio de funcionamento

- Superfície do disco estruturada em regiões altas (pit) e baixas (land)
- Altura dos *pits*: ~120 nm => λ /4 (780/1,55/4)
- Luz de um laser focalizada na superfície reflexiva do disco
- Sinal refletido muda intensidade por interferência construtiva/destrutiva (land/pit)

Prof. Marlio Bonfim TE159 - Memórias

- Feixe incidente na região baixa (land): maior intensidade refletida
- Feixe incidente na região alta (pit): menor intensidade refletida
- interferência destrutiva: h_{pit}=λ/4

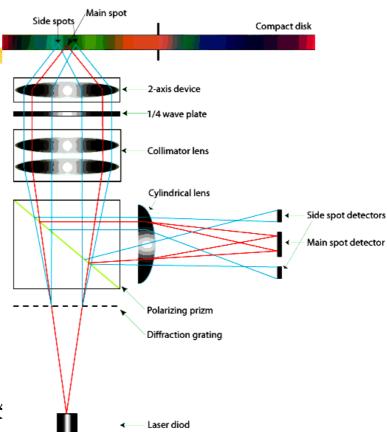

Prof. Marlio Bonfim TE159 - Memórias

11

CD: Princípio de funcionamento

Foto de superfície do CD: regiões escuras: pits e regiões claras:

land

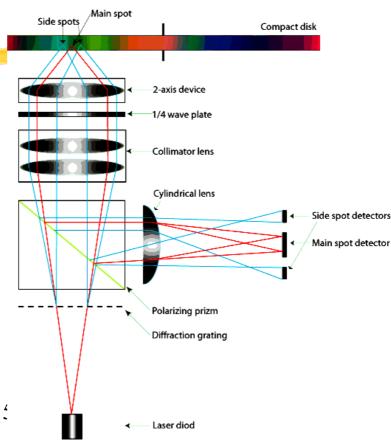


Prof. Marlio Bonfim TE159 - Memórias

Técnica de leitura

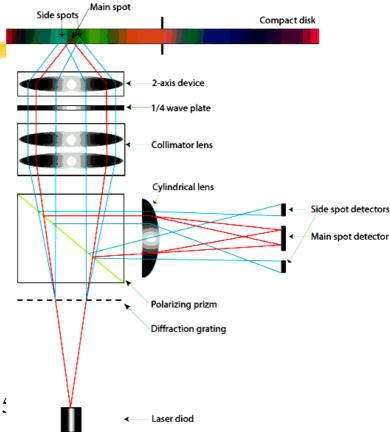
- Luz do laser polarizada linearmente
- Grade de difração: gera feixes secundários
- Prisma seletivo em polarização: separa feixes incidente e refletido
- Lentes colimadoras: paralelização do feixe

Prof. Marlio Bonfim TE1:



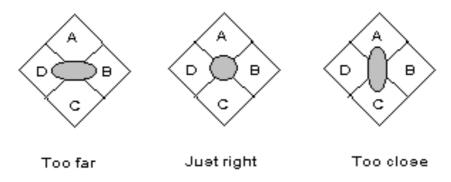
CD: Princípio de funcionamento

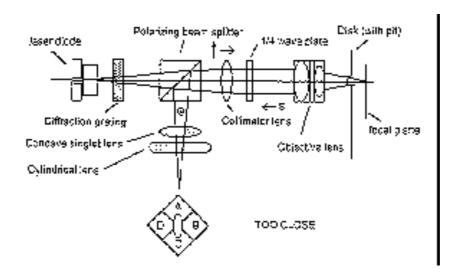
Técnica de leitura


- Lâmina ¼ de onda: converte polarização linear em circular
- Lente focalizadora com translação em 2 eixos: controle dinâmico do foco e da posição da trilha
- Lente cilíndrica: gera astigmatismo no feixe refletido para controle do foco e posição da trilha

Prof. Marlio Bonfim TE15

Técnica de leitura

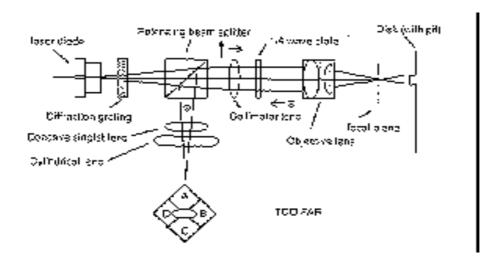

- Conjunto de fotodiodos: deteção da soma e deferença do sinal principal
- Detecção do sinal lateral: correção da posição da trilha


Prof. Marlio Bonfim TE15

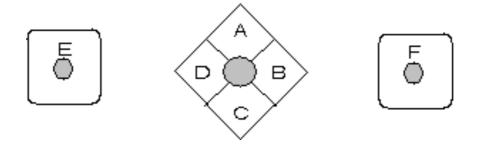
CD: Princípio de funcionamento

- Correção do foco
 - Conjunto de 4 fotodiodos: deteção da soma e deferença do sinal refletido
 - Soma: sinal utilizado para leitura da informação
 - Diferença: sinal usado para correção do foco

Correção do foco



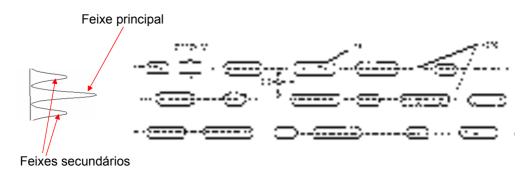
Prof. Marlio Bonfim TE159 - Memórias


17

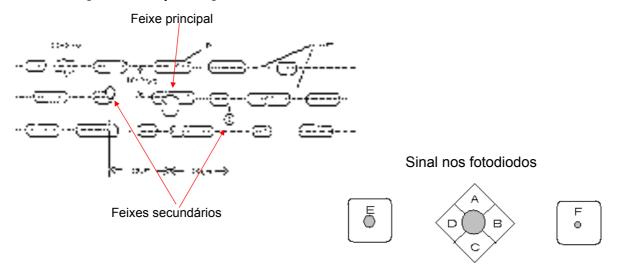
CD: Princípio de funcionamento

Correção do foco

- Correção da posição da trilha
 - 2 fotodiodos laterais auxiliares : deteção dos feixes leterais difratados (grade de difração)
 - Posição na trilha correta: igual intensidade em E e F



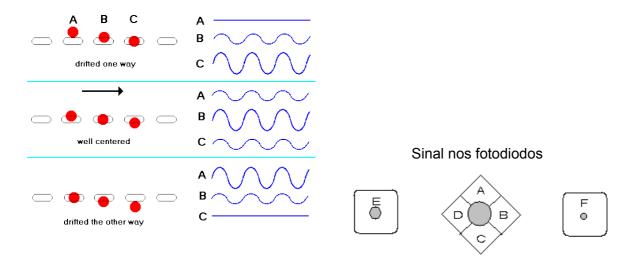
Prof. Marlio Bonfim TE159 - Memórias


19

CD: Princípio de funcionamento

- Correção da posição da trilha
 - Feixes laterais (difratados) incidem nas regiões baixas (land) entre 3 trilhas: maior intensidade média
 - Erro de posição causa variação da intensidade refletida por um dos feixes secundários e pelo principal

Correção da posição da trilha



Prof. Marlio Bonfim TE159 - Memórias

21

CD: Princípio de funcionamento

Correção da posição da trilha

Preparação da matriz e do CD

http://www.physics.udel.edu/~watson/scen103/cd/cd01.html

Prof. Marlio Bonfim TE159 - Memórias

CD: Subdivisão do disco

- Padronização: IEC 908 (Red Book, 1980)
- Velocidade tangencial constante: 1,2 m/s
- Trilha única em espiral contínua (centro > borda)
 - Passo da espiral: 1,6 μm (650 MB); 1,5 μm (700 MB)
- Diâmetro útil: 46 mm interno; 118 mm externo
- Dados subdivididos em setores:
 - Total: 333000 (650 MB); 360000 (700 MB)
 - Bytes por setor: 2352 (dados, ECC, endereço, sincron.)

Prof. Marlio Bonfim TE159 - Memórias

CD: Subdivisão do disco

- Subdivisão dos Setores
- Existem 3 padrões dependendo da aplicação:
 - CD-DA: Audio Digital
 - CD-ROM Modo 1: Dados
 - CD-ROM Modo 2: Video

Prof. Marlio Bonfim TE159 - Memórias

25

CD: Subdivisão do disco

CD-DA:

- Gravação de audio digital, 2 canais, 16 bits, 44,1 kS/s
- Subdivisão em trilhas (1 a 99) e quadros:
- Quadros
 - 13 bits de sincronização (indica início de quadro; 27 bits 8-14)
 - 24 Bytes de dados (6x2x2)
 - 8 Bytes de código de correção de erros
 - 1 Byte de subcódigo (controle e visualização de tempo)

SINC	TIME	DATA	ECC		
13 bits	1 byte	24 bytes	8 bytes		
<>					

CD: Subdivisão do disco

CD-ROM Modo 1:

- Gravação de dados: alta confiabilidade (ECC)
- Subdivisão em setores
 - 12 Bytes de sincronismo: possibilita manutenção da velocidade tangencial constante
 - 4 Bytes de identificação do setor: endereço (max 2³²)
 - 2048 Bytes de dados
 - 288 Bytes de código de correção de erros (ECC)

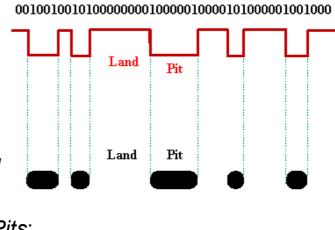
00	FF x 10	00	MIN	SEC	SECTOR	MODE	DATA	ECC
12	bytes (syn	ch)		4 bytes (ID)			2048 bytes	288 bytes
<>								

Prof. Marlio Bonfim TE159 - Memórias

27

CD: Subdivisão do disco

CD-ROM Modo 2:


- Gravação de video (sem ECC)
- Subdivisão em setores
 - 12 Bytes de sincronismo: possibilita manutenção da velocidade tangencial constante
 - 4 Bytes de identificação do setor: endereço (max 2³²)
 - 2336 Bytes de dados

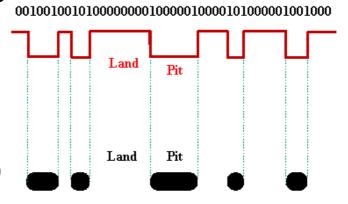
00	FF x 10	00	MIN	SEC	SECTOR	MODE	DATA	
12	bytes (syn	ich)		4 bytes (ID)			2336 bytes	
<>								

CD: Organização dos dados

- Codificação dos dados
 - A informação é armazenada nas transições de pits para land ou vice-versa
 - Cada transição pit-land ou land-pit representa uma mudança de "0" Pits:

para "1"

Largura fixa: 0,5 μm


-comprimento variável: 0,83 a 3,56 μm

Prof. Marlio Bonfim TE159 - Memórias

29

CD: Organização dos dados

- Codificação dos dados
 - Exemplo:
 - 0011
 - 0010: se bit anterior 0
 - 1101: se bit anterior 1
 - **010010**
 - 011100: se bit anterior 0
 - 100011: se bit anterior 1

CD: Organização dos dados

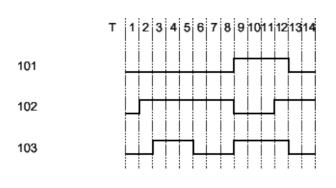
Codificação dos dados

- A resolução óptica dos CD's não permite seqüências longas de bits "1" (transições)
- Máximo comprimento de um pit ou land é limitado para que não haja perda de sincronismo
- A modulação digital EFM (Eight-to-Fourteen Modulation) resolve essa limitação
 - 8 bits codificados em 14 bits
 - Aumento da confiabilidade de leitura: somente determinados padrões de dados são permitidos
 - Maior imunidade a erros de foco e posição de trilha

Prof. Marlio Bonfim TE159 - Memórias 31

CD: Organização dos dados

Modulação EFM


- Baseada em tabela criada por Kees A. S. Immink (1980)
- Densidade espectral nula para f=0 (DC)
- Número mínimo e máximo de bits "0" consecutivos estão dentro de faixa pré-determinada:

Mínimo: 2 bitsMáximo: 10 bits

- 3 bits adicionais no fim da seqüência de 14 bits:
 - Assegura nível DC=0
- Símbolo final: 17 bits para representar 1 Byte (8 bits)

CD: Organização dos dados

Modulação EFM

Data value	Data bits	EFM bits
(decimal)	(binary)	(binary)
101	01100101	0000000100010
102	01100110	01000000100100
103	01100111	00100100100010
104	01101000	01001001000010
105	01101001	10000001000010
106	01101010	10010001000010
107	01101011	10001001000010
108	01101100	01000001000010
109	01101101	0000001000010
110	01101110	00010001000010

Prof. Marlio Bonfim TE159 - Memórias

33

CD: Organização dos dados

- Taxa de transferência de dados
- Considerando-se apenas os dados úteis:
 - CD-DA: 1411,2 kbit/s (1x)
 - CD-ROM Modo 1: 1200 kbit/s (1x)
 - CD-ROM Modo 2: 1368,7 kbit/s (1x)